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Universal scaling law for energy and pressure in a shearing fluid
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Using nonequilibrium molecular-dynamics simulation, we study the shear-rate dependence of pressure and
potential energy in a liquid metal subjected to shear. We show that both thermodynamic properties vary
according to a power law 3 of the shear rate 7, in which the exponent 3 is a simple linear function of
temperature and density. Moreover, we establish that the coefficients for this linear law are the same as those
previously obtained for a Lennard-Jones fluid by Ge et al. [Phys. Rev. E 67, 061201 (2003)]. This is a strong
indication that these coefficients, as well as the linear law for 3, could be applicable to any atomic fluid. It is
also an important step toward the determination of a nonequilibrium equation of state, which would predict the
value of pressure and energy of a shearing fluid for any state point and any value of the applied shear rate.
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The properties of liquids subjected to shear are of great
significance from both a technological and fundamental
standpoint. In recent years, nonequilibrium molecular-
dynamics (NEMD) simulation methods have emerged as a
important tool to study these systems [1]. However, despite
the progress in the field, many issues have yet to be ad-
dressed. For instance, the exact dependence on the applied
shear rate y of the pressure and the energy of shearing fluids,
modeled with realistic many-body potentials, remains an un-
solved issue. Early NEMD studies on simple fluids, modeled
with a pair potential such as, e.g., the Lennard-Jones (LJ) or
the Weeks-Chandler-Anderson potentials, have concluded
that pressure exhibited a shear-rate dependence of 7°2, in
agreement with the predictions of mode-coupling theory
(MCT) [2]. More recently, Matin ef al. [3] suggested that the
%% variation in pressure and energy as a function of shear
was only observed in the vicinity of the triple point. Subse-
quently, Ge et al. [4,5] carried out simulations on a LJ fluid
and found that pressure and energy exhibited both a shear-
rate dependence of 77, in which S is a linear function of the
density and of the temperature. It remains to be seen whether
their conclusions only hold for the LJ system or if they may
be applicable to fluids, modeled with a realistic many-body
potential.

Because of the computational cost associated with realis-
tic many-body potentials, there have been few studies on
nonequilibrium systems modeled with such potentials [6].
Two studies, by Lee er al. [7] and by Marcelli et al. [8], were
devoted to systems of rare gases under shear, modeled with a
Barker-Fisher-Watts two-body potential, supplemented by a
three-body Axilrod-Teller potential. The study by Lee et al.
[7] tended to indicate a 7> dependence for both pressure
and energy, while Marcelli et al. [8] pointed toward a 37
dependence for both properties. In recent work [9], we stud-
ied the rheology of five liquid metals, modeled with a many-
body embedded atom model. We showed that, at the melting
point at P=1 atm, all the liquid metals considered in Ref.
[9] exhibited the same shear-rate dependence for pressure
(with an exponent of ~1.2) and for the various contributions
to the potential energy (with exponents varying from ~1 to
~1.2). To our knowledge, no systematic study, over a wide
range of temperature and densities, of the shear-rate depen-
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dence of the thermodynamic properties of shearing fluids has
been carried out for systems modeled with many-body po-
tentials. In this work, we simulate 20 state points for a sys-
tem of liquid Pb, modeled with a many-body potential and
subjected to shear flow. For each state point, we determine
the exponents characterizing the dependence of pressure and
energy upon the applied shear rate . The goal of this work is
threefold: (i) to determine whether pressure and potential en-
ergy exhibit the same shear-rate dependence, (ii) to find the
simplest yet accurate relation between the exponents and
density and temperature, and (iii) to find out if the linear law
obtained for a LJ fluid [5] also holds for a liquid metal such
as Pb.

We model the Pb atoms with the quantum-corrected
Sutton-Chen potential [10]. The potential energy U, of a
system of N atoms is given by

Uiora = Utwo—body + Umany—body

1 al"
= EEZI Ejs&i 8(:) - 8C211 Vb M
in which r;; is the distance between two atoms i and j and the
density term p; is given by p,-=2j¢,»(f)’". We use the set of
parameters proposed by Luo er al. [10]: a=4.9495 A,
£=0.557 72X 1072 eV, C=45.882, m=7, and n=10. This
model accurately describes both the thermodynamic and the
transport properties of Pb and other metals [9-12].

We use the Sllod equations of motion [1] to simulate lig-
uid Pb undergoing shear flow,
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In Eq. (2), r;, p;> and m denote the position, momentum, and
mass of particle i, F; is the force exerted on particle i, N is
the number of particles, e, is a unit vector along the x axis, y
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is the applied shear rate, and « is the Gaussian thermostat
multiplier [1]. The choice of a thermostat may have a signifi-
cant effect on the results under far-from-equilibrium condi-
tions [13-18], for shear rates typically larger than 10'? s7!
[19,20]. In this work, we restrict our study to shear rates
lower than 102 571,

We integrate the equations of motion for systems of 512
Pb atoms with the operator splitting algorithm presented in
Ref. [21] and a time step of 10 fs. We study 20 different state
points. We start from a liquid of Pb at the melting point at
ambient pressure, i.e., at a density of d,=9.79 g cm™ and
T,,=575 K. In the rest of this work, we reduce the tempera-
ture with respect to the melting temperature, 7°=7/T,,, and
the density with respect to the density at the melting point,
d*=d/d,. We then carry out simulations for 19 other state
points for temperatures ranging from 7°=1 up to 7°=1.5 and
for densities ranging from d*=1 down to d*=0.85. All state
points studied in this work lie in the dense fluid region of the
phase diagram of Pb. For each state point, we first carry out
a 20 ns equilibrium molecular-dynamics run during which
we calculate the shear viscosity according to the Green-Kubo
formalism

e}

%4
n=— <ny(S)ny(0)>ds, 3)
kgT
in which P, is the shear stress [6]. We also evaluate the

average of the square of the shear stress to determine
the inﬁnite frequency shear modulus according to
G, V( (O)}/ kT and the Maxwell relaxation time as
Ty=mn/ Gm Then, for each state point, we carry out nonequi-
librium molecular-dynamics simulations with the equations
of motion presented in Eq. (2) for ten different shear rates
ranging from 10'° s~' to 10'? s~!. This range of shear rates
allows us to access both the Newtonian regime and the non-
Newtonian regime. Additional calculations were also carried
out on a few state points for very low shear rates (down to
10 s71), using a combination of NEMD simulations with the
transient-time correlation function formalism (TTCF)
method (see Refs. [9,12] for more details). The TTCF results
were in excellent agreement with the NEMD results, ob-
tained for higher shear rates, thereby confirming that the
range of shear rates studied in the NEMD simulations pro-
vides an accurate picture of the shear-rate dependence of
pressure and energy. For each shear rate, we first carry out a
run of 0.5 ns to allow the system to reach a steady state and
then a second run of 1 ns, over which we collect the averages
of the pressure P(7), of the two-body contribution to the
potential energy Uyyo.body(7), Of the many-body contribution
to the potential energy Upnany-poay(¥), and of the total poten-
tial energy U,i(7). We then rescale [9] the shear rate y by
the inverse of 7, the average of pressure by G.., and the
averages for all contributions to the potential energy by their
average value at equilibrium (collected during the 20 ns
equilibrium molecular-dynamics run). We then fit the follow-
ing power-law forms to the simulations results for the pres-
sure P(y7y):
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FIG. 1. Variation in Uy pody( %)/ Utwo-body,equilibrium @ @ function
of ¥, Upo-body(7)- Results are shown for two state points: filled
circles (@) are results obtained for (d*=1, T"=1) while open tri-
angles (A) are for (d*=0.9, T"=1.5).

P(¥7Ty1) = Peguitibrium
G,

= Ap(ym)P, 4)

where P(y7y) is the trace of the pressure tensor. The ele-
ments of the pressure tensor are evaluated according to the
formalism proposed by Stankovic er al. [6]. Similarly, we
perform the following fit for U(y7y):

an Y
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We first discuss the variations for the power-law expo-
nents for each property as a function of the state point
studied. As an example, we provide in Fig. 1 the NEMD
results obtained for the two-body contribution to the
potential energy for two state points, (d*=1, T%=1) and
(d*=0.9, T*=1.5), together with the power-law fits obtained
with Eqgs. (4)~(7). We find an exponent By _1 17 for
the first state point and an exponent BU —1 770 for the
second state point. We obtained similar “fesults for all four
properties (P, Uyotal, Uswo-body> @A Upany-pody) Studied in this
work. We draw four main conclusions from these results.
First, we find the value of the exponents to be state-point
dependent for all properties. Second, the exponents vary be-
tween ~ 1.1 and ~2 for all properties. Third, the 3* depen-
dence predicted by MCT only holds for a very small region
of the phase diagram. Fourth, when we compare the values
taken by various exponents Sp, By Bu and

total’ (Wo- bod

Unnang-body for a given state point, we find that all exponents
are aIyways within less than 5% of each other. This demon-
strates that the thermodynamic properties of liquid Pb under
shear are accurately described by a single power law of the
shear rate 77, in which 3 is the same for all properties. These

four points establish that the thermodynamic properties of a
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FIG. 2. Ratio between 3, determined from the simulations, and
Brie» predicted by Eq. (8), as a function of d*. The solid line indi-
cates a perfect correspondence between 3 and By;;. The dashed line
delimits the zone in which there is less than 5% of difference be-
tween B and By Results are presented for P (O), Upyo-poay (),
Umany-body (¢), and Uy (A). Filled symbols are obtained
for T#=1.2 while open symbols are for 7"=1.5.

liquid metal undergoing shear flow are at the very least
qualitatively the same as those of a shearing LJ liquid [5].
We now quantify the state-point dependence of 3 and set
on to find the simplest, yet accurate, relation between 3, d*,
and T". We rapidly find that a simple linear scaling law of the
temperature and density allows us to accurately reproduce
the exponents obtained from the NEMD results. The linear
scaling law we obtain is given by the following equation:

,3= ap+ ach‘k - azd*
=(3.7 £ 0.04) + (0.44 = 0.04)T" - (2.95 + 0.04)d".
(8)

This simple linear scaling law reproduces the results ob-
tained for the 20 state points with a relative root-mean-
square error of 0.047. To give a better sense of the accuracy
of the fitting procedure, we compute the ratio of the expo-
nents estimated from the NEMD simulations to the value
predicted by the linear scaling law. We present in Fig. 2 the
results obtained for two temperatures 7°=1.2 and T"=1.5.
For all state points, we find the ratio to be very close to 1 for
all four properties. This means that the NEMD results are all
in good agreement, and always within at most ~5%, with
the value given by Eq. (8). We also find that for all proper-
ties, the exponent is neither systematically underestimated
nor systematically overestimated by the linear scaling law.
This fit also means that if we plot the variations in the expo-
nent B given by Eq. (8) as a function of temperature and
density, we obtain a plane in the thermodynamic state space.
The predictions from MCT (i.e., states for which f=3/2) are
recovered for state points at the intersection between the two
planes of equations S=3/2 and Eq. (8). As observed for the
LJ fluid, B is close to 3/2 for only a small region of the
thermodynamic state space. For liquid Pb, we find that this
region corresponds to a line of equation

(2.95 + 0.04)d" — (0.44 = 0.04)T* = (2.2 = 0.04).  (9)

In previous work [9], we showed that the thermodynamic
properties of several fcc metals exhibited the same shear-rate
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dependence at the melting point. We also found that for four
different state points, the shear stress autocorrelation func-
tion as a function of time could be superimposed onto one
another for all these metals. These two facts are a strong
indication that Eq. (8) can be used to reliably predict the
value of the exponent 8 for any state point and any metal.
This means that using this value for B together with the
power laws of Egs. (4)—(7), we can predict the value taken
by pressure and energy of a liquid metal undergoing shear
flow for any value of the applied shear rate. In other words,
these equations constitute a set of nonequilibrium equation
of states for the properties of liquid metals subjected to shear.
We now attempt to make a connection between the results
obtained for Pb and the results obtained on the LJ fluid by
Ge et al. [5]. For this purpose, we need to write the scaling
laws, obtained in this work for Pb and for the LJ fluid [5].
We, therefore, consider the two systems at an equivalent
state point, e.g., the melting point at zero pressure. The scal-
ing law we obtain for Pb is written in the following system
of reduced units: the temperature and the mass density are
reduced with respect to the melting temperature and densities
at zero pressure. We now re-write this scaling law in terms of
the reduced number density p*=N/V*3, where V* is the re-
duced volume, rather than the reduced mass density d*. Us-
ing the unit length we introduced for Pb (2 X rp,), we have
p*:Sr%bp where p is the number density. We then obtain for
the reduced mass density d*=M/[9.79N,(8r3,)] X p*, where
M=207.2 g mol™! is the atomic weight for Pb and N, the
Avogadro number. If we plug the expression of d* as a func-
tion of p* in Eq. (8), we obtain the following scaling law:

Ma2
83, X 9.79N, "

= (3.7 + 0.04) + (0.44 + 0.04)T* — (2.42 + 0.03)p".
(10)

£

Bzao‘FGIT‘*

We now turn to the scaling law proposed by Ge ef al. for
the LJ fluid [5],

B=A+BT - Cp*, (11)

where T is the reduced temperature, T*=kzT/e, and p* is
the reduced number density, p*=po>=(N/V)o>. With this set
of reduced units, Ge et al. obtained the following parameters:
A=3.67%0.04, B=0.69*+0.03, and C=3.35=*0.03. Instead
of rescaling the temperature by &/kp, we use the melting
temperature of the LJ fluid at zero pressure and rescale the
temperature by 0.69¢/ky [22]. Then, instead of using o as
the unit length, we use the equilibrium distance between two
LJ particles, 20 This means that we need to multiply the
number density p by \20° instead of o to obtain the reduced
number density p*. With this new set of reduced units, we
obtain the following law for the fit proposed by Ge et al.:

. C .
B=A+0.69><Br—75p
\J

=(3.67 = 0.04) + (0.48 + 0.02)T* — (2.37 = 0.02)p".
(12)
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The parameters obtained for liquid Pb [Eq. (10)] and for
the LJ fluid [Eq. (12)] are in excellent agreement with each
other. This finding has two very significant consequences.
First, since the same linear law, with the same coefficients,
can be used to quantify the shear-rate dependence of the
exponent S for fluids modeled with very different interaction
potentials, this result constitutes an evidence of the univer-
sality of the linear law for B for all atomic fluids. Second,
this finding is an important step toward the determination of
a nonequilibrium equation of state for all atomic fluids. Since
the exponent B can be estimated from Eq. (10) for any
atomic fluid and any state point, the value taken by the pres-
sure and the potential energy (including all components such
as, e.g., the two-body as well as the many-body contributions
in the case of Pb) can be calculated for any shear rate using
Egs. (4)—(7).

Some questions are still unanswered. For instance, does a
similar universal scaling exist for the shear viscosity? Todd
[23] showed that for the LJ fluid, the shear viscosity varies
according to a power law of the shear rate with an exponent,
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whose value is a linear function of density and temperature.
To determine if the same relation holds for liquid Pb, we
fitted our results for the shear viscosity with a power law
with an exponent 3,. We found that g, varied from ~0.5 to
~1.4 and increased with either an increase in temperature or
a decrease in density. 5, was in agreement with the predic-
tions from MCT (~0.5) over a very narrow region of the
thermodynamic state space. However, attempts to fit 3, with
a linear law of density and temperature were deemed to be
inconclusive. Our results, together with the findings of Ge et
al. [5], shed light on some of the limitations of MCT [2]. We
hope these results will prompt liquid state theorists to im-
prove on this theory to account for the universal state-point
dependence of the exponent 8 observed for atomic fluids.
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